
CS103 Handout 47

Spring 2017 June 5, 2017

Extra Practice Problems 12

We got a number of requests over Piazza for more practice problems on the Myhill-Nerode theo-
rem, designing CFGs, and proving undecidability and unrecognizability. Here’s some more practice
problems on those topics. Hope this helps!

Problem One: The Myhill-Nerode Theorem
Many of the languages you designed CFGs for on Problem Set Eight are not regular.

i. Let Σ = {a, b} and let L = { w ∈ Σ* | w is a palindrome and |w| ≥ 10 }. (Recall that a palin-
drome is a string that's the same when read forwards and backwards.) For example, we have
abaaaaaaba ∈ L and abbbababbba ∈ L, but abba ∉ L and bbbbbbbbba ∉ L. Prove that L is
not a regular language.

ii. Let Σ = {a, b} and let L = { w ∈ Σ* | w is not a palindrome }, the language of strings that
are not the same when read forwards and backwards. For example, aab ∈ L and baabab ∈ L,
but aba ∉ L, bb ∉ L, and ε ∉ L. Prove that L is not a regular language.

iii. Let Σ = {1, +, =} and let L = { 1m+1n=1m+n | m, n ∈ ℕ }. For example, the strings
111+1=1111 and +1=1 are in the language L, but 1+11=11 is not, nor is 1+1+1=111. Prove
that L is not a regular language.

iv. Let Σ be an alphabet containing these symbols:
Ø ℕ { } , ∪

Let L = { w ∈ Σ* | w is a syntactically valid string representing a set }. Prove that L is not a
regular language.

Problem Two: Nonregular Languages via a Different Path
The Myhill-Nerode theorem is a powerful tool for proving that languages aren’t regular, but it might
not be the easiest way to prove that a given language isn’t regular. This problem explores a different
route you can take to prove that various languages aren’t regular.

i. Prove that if L₁ is a language, L₂ is a regular language, and L₁ ∩ L₂ is not regular, then L₁ is
not regular.

ii. Using your result from part (i), but without using the Myhill-Nerode theorem, prove that the
language L = { w ∈ {a, b}* | w has the same number of a’s as b’s } is not regular.

2 / 3

Problem Three: Designing CFGs
Below is a list of alphabets and languages over those alphabets. Design a CFG for each of these lan-
guages.

i. Let Σ = {1, ≥} and let L = { 1m≥1n | m, n ∈ ℕ and m ≥ n }. Write a CFG for L.

ii. On Problem Set 8, you explored the language L₁ = { 1m+1n=1m+n | m, n ∈ ℕ } over the alpha-
bet {1, +, =} Consider the following generalization of this language, which we will call L₂,
which consists of all strings describing unary encodings of two sums that equal one another.
For example:

1 + 3 = 4 would be encoded as 1+111=1111

4 = 1 + 3 would be encoded as 1111=1+111

2 + 2 = 1 + 3 would be encoded as 11+11=1+111

2+0+2+0=0+4+0 would be encoded as 11++11+=+1111+

0=0 would be encoded as =

Notice that there can be any number of summands on each side of the =, but there should be
exactly one = in the string; thus 1=1=1 ∉ L₂. Write a CFG for L₂.

iii. Let Σ = {(,), [,]} and let L = {w ∈ Σ* | w is a string of balanced parentheses and brack-
ets}. This means that all parentheses and brackets must match one another, and collectively
they must obey the appropriate nesting rules. For example, ([])[] ∈ L, but ([)] ∉ L. Write
a CFG for L.

Problem Four: Formalizing the Lava Diagram
In the Guide to the Lava Diagram, we explored these two languages:

L₁ = { ⟨M⟩ | M is a TM and |ℒ(M)| ≥ 2 }

L₂ = { ⟨M⟩ | M is a TM and |ℒ(M)| = 2 }

The Guide makes many claims about these languages, but never actually proves them.

i. Prove that L₁ is undecidable.

ii. Prove that L₂ is undecidable.

iii. Show that L₁ is recognizable by designing a verifier for it. Your verifier should be repre-
sented in pseudocode via a method with a signature like this one:

bool imConvincedIsInL1(TM M, Arg₁Type arg₁, Arg₂Type arg₂, …, Arg Type argₙ ₙ)

where the arguments beyond the first represent the certificate and can be of any type you’d
like.

3 / 3

Problem Five: Self-Reference and RE
Since ATM is an RE language, there’s a recognizer for ATM, which we can represent in software as a
method willAccept. Consider the following program P:

int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

Prove that this program loops on all inputs.

Problem Six: Threat Detection
There have been a ton of news articles about computer systems being attacked by independent actors
and nation-states. You might wonder why our computers are so vulnerable – couldn't someone just
write a program that analyzes a program's source code and determine whether it has any security
problems?

Let's consider a simplified scenario. Imagine that there's a special method

void sendSecretDataTo(String emailAddress)

that, if called, sends an email containing a bunch of secret information to the specified email ad-
dress. For example, you might call sendSecretDataTo("john.roberts@supremecourt.gov") to
send all the secret data to Chief Justice John Roberts, or call sendSecretDataTo("bad.ac-
tor@hackers.com") to send all the secret data to evil hackers.

You are interested in whether it's possible to write a method

bool canLeakDataTo(String program, String emailAddress)

that takes as input the source code of a program and an email address, then returns true if there is
some execution of program that causes the secret data to the specified email address and returns
false otherwise. This program would let you check whether a particular program might ever leak
data to a specified email address, which would make it easier to check whether the program is se-
cure.

Is it possible to implement this method? If so, write code for the method, then prove that your code
works as intended. If not, prove that it's not possible to implement this method.

(As a note, if you try implementing this method, you should do so in a way that doesn’t call sendSe-
cretDataTo, and if you try proving this method can’t be written, you can assume that no correct im-
plementation will ever call sendSecretDataTo.)

